Detection of Prostate Cancer using Multi-parametric Magnetic Resonance

نویسندگان

  • William Wells
  • Eric Grimson
چکیده

A multi-channel statistical classifier to detect prostate cancer was developed by combining information from 3 different MR methodologies: T2-weighted, T2-mapping, and Line Scan Diffusion lmaging(LSDI). From these MR sequences, 4 sets of image intensities were obtained: T2-weighted(T2W) from T2-weighted imaging, Apparent Diffusion Coefficient(ADC) from LSDI, and Proton Density (PD) and T2 (T2Map) from T2-mapping imaging. Manuallysegmented tumor labels from a radiologist were validated by biopsy results to serve as tumor "ground truth." Textural features were derived from the images using co-occurrence matrix and discrete cosine transform. Anatomical location of voxels was described by a cylindrical coordinate system. Statistical jack-knife approach was used to evaluate our classifiers. Single-channel maximum likelihood(ML) classifiers were based on 1 of the 4 basic image intensities. Our multi-channel classifiers: support vector machine (SVM) and fisher linear discriminant(FLD), utilized 5 different sets of derived features. Each classifer generated a summary statistical map that indicated tumor likelihood in the peripheral zone(PZ) of the gland. To assess classifier accuracy, the average areas under the receiver operator characteristic (ROC) curves were compared. Our best FLD classifier achieved an average ROC area of 0.839 (±0.064) and our best SVM classifier achieved an average ROC area of 0.761 (±0.043). The T2W intensity maximum likelihood classifier, our best single-channel classifier, only achieved an average ROC area of 0.599 (± 0.146). Compared to the best single-channel ML classifier, our best multi-channel FLD and SVM classifiers have statistically superior ROC performance with P-values of 0.0003 and 0.0017 respectively from pairwise 2-sided t-test. By integrating information from the multiple images and capturing the textural and anatomical features in tumor areas, the statistical summary maps can potentially improve the accuracy of image-guided prostate biopsy and enable the delivery of localized therapy under image guidance. Thesis Supervisors: William Wells 111, Eric Grimson PREFACE ................................................................................................................................. 2 PART 1: TH E EXPERIM ENT ................................................................................................ 2 INTRODUCTION ....................................................................................................................... 2 M ATERIALS AND M ETHODS ........................................................................................... 4 Patient selection and imaging protocols ........................................................................... 4 Tumor "ground-truth " labels ............................................................................................ 5 Texturalfeatures ................................................................................................................ 5 Anatomicalfeatures .......................................................................................................... 6 F e a tu re se ts ....................................................................................................................... 6 Statistical classifiers ......................................................................................................... 6 S of tw a re ............................................................................................................................ 6 Classifier accuracy ........................................................................................................... 6 RESULTS .............................................................................................................................. 7 Pathology summary .......................................................................................................... 7 Signal intensity statistics ................................................................................................... 7 Classifier accuracy ........................................................................................................... 8 CONCLUSION S ................................................................................................................. 11 PART 2: SOFTW AR E TOOLS ............................................................................................. 17 GETTING STARTED: DOWNLOADING JAVA ............................................................................. 17 BASIC COMMANDS ............................................................................................................... 17 Loading images ............................................................................................................... 17 Adjusting Window/Level .................................................................................................. 17 Viewing to a Different Slice ............................................................................................. 18 Im a g e S ize ....................................................................................................................... 1 8 Scan Information ............................................................................................................. 18 Export to M ATLAB .......................................................................................................... 18 Export to Slicer ............................................................................................................... 18 Configuration .................................................................................................................. 19 Closing ImagelExiting .................................................................................................... 19 SEGMENTATION AND REGION OF INTEREST (ROI) ................................................................ 19 DrawinglErasinglHiding a ROI ...................................................................................... 19 LoadinglSaving ROI ....................................................................................................... 20 Export an ROI to Slicer ................................................................................................... 20 CopyinglSubtracting 2 ROIs ........................................................................................... 20 Biopsy Validated ROI ...................................................................................................... 20 IMAGE STATISTICS ................................................................................................................ 20 R O I Vo lu m e ..................................................................................................................... 2 1 Histogram: Image, ROI, Smap Histogram ..................................................................... 21 Correlation Coefficients and Scatter Plots ..................................................................... 21 FITTING ONE IMAGE VOLUME INTO ANOTHER: RESAMPLING ................................................ 21 CLASSIFIER TRAINING .......................................................................................................... 22 Standardizing Feature ..................................................................................................... 22 Build Co-occurrence matrices ........................................................................................ 22 Building Classifiers: FLD and SVM ............................................................................... 22 SUMMARY STATISTICAL M AP (SMAP) ................................................................................... 22 Generating a SmaplApplying a Classifier ....................................................................... 22 Loading a Smap .............................................................................................................. 23 Controlling Smap Appearance ........................................................................................ 23 Smap Error RatelROC ................................................................................................... 24 ACK NOW LEDGEM ENTS ................................................................................................... 25 REFERENCES ....................................................................................................................... 26

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of multi-parametric (mp) MRI in prostate cancer.

Multi-parametric magnetic resonance imaging is increasingly being recommended as standard imaging modality for prostate cancer diagnosis and staging. It comprises structural T2 and T1 sequences supplemented by functional imaging techniques, i.e. diffusion-weighted, dynamic contrast enhanced and spectroscopic imaging. Pre-biopsy multi-parametric magnetic resonance imaging is recommended for both...

متن کامل

Comprehensive Framework for Computer-Aided Prostate Cancer Detection in Multi-Parametric MRI

Prostate cancer is the most diagnosed form of cancer and one of the leading causes of cancer death in men, but survival rates are relatively high with sufficiently early diagnosis. The current clinical model for initial prostate cancer screening is invasive and subject to overdiagnosis. As such, the use of magnetic resonance imaging (MRI) has recently grown in popularity as a non-invasive imagi...

متن کامل

Will Multi-Parametric Magnetic Resonance Imaging be the Future Tool to Detect Clinically Significant Prostate Cancer?

Multi-parametric magnetic resonance imaging is an emerging imaging modality for diagnosis, staging, characterization, and treatment planning of prostate cancer. In this report, we reviewed the literature for studies assessing the accuracy of multi-parametric magnetic resonance imaging in detecting clinically significant prostate cancer, and we critically examined the future role of this imaging...

متن کامل

Signal Intensity of High B-value Diffusion-weighted Imaging for the Detection of Prostate Cancer

Background: Diffusion-weighted imaging (DWI) is a main component of multiparametric MRI for prostate cancer detection. Recently, high b value DWI has gained more attention because of its capability for tumor characterization. Objective: To assess based on histopathological findings of transrectal ultrasound (TRUS)-guided prostate biopsy as a reference, an...

متن کامل

Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI

Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...

متن کامل

Discovery Radiomics for Multi-Parametric MRI Prostate Cancer Detection

Prostate cancer is the most diagnosed form of cancer in Canadian men, and is the third leading cause of cancer death. Despite these statistics, prognosis is relatively good with a sufficiently early diagnosis, making fast and reliable prostate cancer detection crucial. As imaging-based prostate cancer screening, such as magnetic resonance imaging (MRI), requires an experienced medical professio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014